
International Journal of Information Technology and Knowledge Management
January June 2009, Volume 2, No. 1, pp. 109-113

A SOFTWARE METRIC FOR THE ACTIVENESS OF A CLASS

Sachin Lakra*, Deepak Kumar Sharma*, Jugnesh Kumar**, Rakesh Chandra Verma*** & T. V. Prasad****

This paper proposes a software metric called Class Activeness Metric which helps to determine the level of accessibility of
the members of a class when instantiated as objects. Complexity in object interactions can lead to time delays in accessing
members not just confusing inheritance hierarchies. For non-complex object interactions, classes must be designed well in
terms of easy accessibility. The paper results in the Class Activeness Metric, which gauges the quality of design of a class.
The results of the paper raise the question of whether data hiding is beneficial for the design of a class or hampers it.

Keywords: Object Oriented Technology, Class, Inheritance, Friend Functions, Activeness, Class Activeness Metric.

* Department of Information Technology, Manav Rachna College
of Engineering, Haryana, INDIA, E-mail: sachinlakra@yahoo.co.in,
deepak.yo@gmail.com

** Department of Computer Science and Engineering, Gold Field
Institute of Technology and Management, Haryana, INDIA,
E-mail: jugnesh@rediffmail.com

*** Department of Information Technology, Institute of Management
and Technology, Haryana, INDIA, E-mail: rcvranchi4@yahoo.com

**** Department of Computer Science and Engineering, Lingaya’s
University, Haryana, INDIA, E-mail: tvprasad2002@yahoo.com

1. INTRODUCTION

Object Oriented Technology (OOT) is gained a stronghold
in importance and usage in the IT industry as a methodology
for development of software. The basis of this technology
lies in Component-based Assembly which is prevalent in
the world of machines and computer hardware. Pre-designed
components are picked off-the-shelf and placed at pre-
determined positions to create larger assembled parts, which
are further assembled into a complete machine. The same
is true of Computer Hardware, where the components are
Integrated Circuits and Printed Circuit Boards. In OOT, the
components are design time classes and runtime objects.
These are “assembled” together in a software module, which
are further combined to create a complete software system.

All parts of a machine must take part in the functioning
of the complete machine. Each part must function perfectly
otherwise the machine will fail at some point or the other.
For the parts to function effectively and efficiently, they must
be designed well. Each of them must be accessible with
easily crossable interfaces and simple internal design. For
the design to be considered a good design, its quality of
design must be measurable. The CAM is a measure of the
accessibility of the members of a class indicating the quality
of design of that class.

The paper is divided into sections. Section 1 introduces
the paper. Section 2 explains the concept of Activeness.

Section 3 defines some basic concepts of Object Oriented
Technology, which affect the Class Activeness Metric.
Section 4 gives the notation used in the paper. Section 5
considers the effects of visibility of members of a class on
the Activeness of the Class. Section 6 explores the effects
of Inheritance on the Activeness of a Class. Section 7 reflects
on the effect of friend functions on the Activeness of a Class.
Section 8 defines the Class Activeness Metric and proposes
a mathematical formulation of the CAM. Section 9
concludes the paper.

2. ACTIVENESS

2.1 A Recent Concept

Activeness is a recent new concept and is defined as the
degree of readiness of a system to respond to the stimuli
from the environment in which it exists [2]. Activeness may
be related to any living entity or any system which exists in
any environment in the universe. The Activeness of vacuum
without any stimuli and no system existing in it is zero [2].

2.2 Why Does Activeness Exist in a System?

The question arises as to why a given system possesses
Activeness. The answer is that every system has some
“Organizedness” in it, that is, there is some degree of order
in the system. The definition of a system itself says that “a
System is a set of components working together to achieve
a goal.” Components cannot work together if they are not
organized. This, in turn, implies that if a system is given an
external stimulus there will be some change in the degree
of order of the system, that is, there will be a response of
the system to the stimulus. Every system responds to such
stimuli. The “Organizedness” of the system makes it ready
to respond to them to some degree. This degree of readiness
of a system to respond to a stimulus is the concept called
Activeness [3].

��� ������	
����	������	�����	������	�������	�����	������	�������	�����	�	��	��	������

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\23_SACHIN LAKRA_DEEPAK_JUGNESH_RAKESH_TV PRASAD

2.3 What is the Need to Study the Activeness of a
System?

Another important question is that why Activeness should
be studied at all. The answer lies in the fact that the observer
wants to know how far she can depend on a system and its
response. The system can respond well if it has the readiness
to do so and if it is stable. It is stable if it is organized, i.e.,
if it has order. Thus if the Activeness of a system is known,
its stability and how well it can respond to the stimulus it
will be given, can be judged[3].

2.4. Origin of the Concept of Activeness

The first author of this paper made the observation that if a
human being tries to ward off a honeybee by waving a hand
at it, the honeybee may get angered and may bite the human
being. He wondered why the honeybee, being so small, is
able to hurt a much bigger human being. The obvious answer
was that the honeybee is capable of biting the human being
and is therefore able to bite him. Further, the honeybee was
capable because it was a system comprised of various
biological subsystems, one of which was the sting, that is,
the honeybee was very well organized and was ready to
defend itself in case of an attack. This led to the idea of
studying various systems as to how they can react to
environmental stimuli.

3. DEFINITIONS OF BASIC CONCEPTS USED

3.1 What is a Class?

A class is an encapsulation of high-level abstractions of real-
life entities, and exhibits the property of data hiding. The
major action that can be performed by or on a class(es) is
inheritance. A class exists only at design time.

3.2 Structure of a Class

A class encapsulates the two components of data and
functionality. Data is in the form of member variables (or
properties or attributes) and functionality is in the form of
member functions (or methods or messages).

3.3 Types of Visibility in a Class

As defined in most Object Oriented languages, a class allows
three types of visibility, namely, private, public and
protected, for its data and functionality [1].

3.4 Inheritance

Inheritance is the concept of derivation of the data or
functionality of a parent class by a new class, which is
similar to the parent class but has certain specialized features
of its own.

4. NOTATION USED

The notation used in Table 1 below and the rest of this paper
is summarized as follows:

C = Class under consideration,

CA = Activeness of Class C,

C
AN

= Activeness of Class C under no inheritance,

CAU = Activeness of Class C under public inheritance,

C
AI

= Activeness of Class C under private inheritance,

CAR = Activeness of Class C under protected inheritance,

n
i
= number of levels of inheritance,

nf = number of friend functions in a class,

v
u

= number of public member variables,

fu = number of public member functions,

v
i
= number of private member variables,

fi = number of private member functions,

v
r

= number of protected member variables,

fr = number of protected member functions,

v
ui

= sum of number of member variables publicly
inherited from class C by all the derived classes or
by C from all the base classes,

fui = sum of number of member functions publicly
inherited from class C by all the derived classes or
by C from all the base classes,

v
ii

= sum of number of member variables privately
inherited from class C by all the derived classes or
by C from all the base classes,

f
ii

= sum of number of member functions privately
inherited from class C by all the derived classes or
by C from all the base classes,

v
ri

= sum of number of member variables inherited from
class C by all the derived classes or by C from all
the base classes under protected inheritance,

f
ri

= sum of number of member variables inherited from
class C by all the derived classes or by C from all
the base classes under protected inheritance,

n
lu

= number of levels of public inheritance,

n
li

= number of levels of private inheritance,

n
lr

= number of levels of protected inheritance.

5. EFFECTS OF VISIBILITY ON THE ACTIVENESS OF A CLASS

The Activeness of a class depends on the visibility levels of
each of the various members of the class. This dependence
is described below.

The Activeness C
A
, of a class C depends directly on the

sum su of the number of public member variables v
u
 and

the number of public member functions f
u
 in the class, i.e.,

C
A
 ∝ s

u
 = v

u
 + f

u
(1)

�	��������	������	���	���	����������	��	�	�
��� ���

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\23_SACHIN LAKRA_DEEPAK_JUGNESH_RAKESH_TV PRASAD

The Activeness C
A
, of a class C depends inversely on

the sum si of the number of private member variables v
i
 and

the number of private member functions f
i
 in the class, i.e.,

1 1
A

i i i

C
s v f

∝ =
+

(2)

The Activeness C
A
, of a class C depends directly on the sum

sr of the number of protected member variables v
r
 and the

number of protected member functions f
r
 in the class, i.e.,

rrrA fvsC +=∝ (3)

5.1 Activeness of a Class with No Inheritance

The case when there is no inheritance, where the various
public and protected member functions can access the rest
of the members of the class C under consideration, is a
special case. Here, the greater the number of public and
protected member variables and member functions defined
within the class, greater the accessibility of C. But, the
greater the number of private members variables and
member functions in C, lesser the accessibility of C. This is
represented by the following equation:

()
, 0u r

A AN i
i

s s
C C n

s

+
∝ = = (4)

6. Effects of Inheritance on the Activeness of a Class

The Activeness C
A
, of a class C, depends on two parameters

of inheritance, namely, the sum of the number of member
variables and the number of member functions inherited
from C or by C, and the number of levels of inheritance nl,
according to the visibility levels.

This dependency of C
A
 on the type of visibility in

inheritance for each of the two parameters mentioned above
is shown in the following table and explained below:

Table 1
Dependency of the Activeness C

A
 of a Class on Inheritance

Parameters and the Type of Visibility

Parameter Inheritance

Public Private Protected

Sum of the number C
A ∝ iu

, C
A
∝ ()

, 1u r
li

i

i i
n

i

+ = C
A
 ∝ (i

u + ir
),

of member variables where where i
i
 = v

ii
 + f

ii
, where

inherited and the i
u = vui

+f
ui

i
u = vui + f

ui
i

r
 = v

ri
 + f

ri

number of member and i
r
 = v

ri
 + f

ri

functions inherited

Number of levels C
A
 ∝ n

lu
Defined only for C

A
∝ nlr

, n
lr =1

of inheritance, nl n
li
= 1, where n

li

does not affect C
A

6.1 Public Inheritance

In Public inheritance, the greater the number of member
variables and member functions inherited from class C,
greater the accessibility of C. Similarly, greater the number
of levels of public inheritance, greater is the accessibility
of the members of the Class C under consideration and
hence, greater the Activeness of C. From Table 1, the
following relation is obtained for Public inheritance:

C
A
 ∝ C

AU
 = n

lu
 × i

u
(5)

where

i
u
 = v

ui
 + f

ui

6.2 Private Inheritance

In Private inheritance, the case of the number of levels being
1, i.e., where n

li
= 1, is a special case. This case is to be

considered since public and protected members inherited
privately become private in the derived class. Thus, the
greater the sum of the number of public and protected
member variables and member functions privately inherited
from class C, greater the accessibility of C. Also, the greater
the sum of the number of private member variables and
member functions privately inherited from class C, lesser
the accessibility of C, as private members are not inherited
in this type of inheritance. From Table 1, the following
relation is obtained for Private inheritance up to one level:

()
, 1, 0u r

A AI li i
i

i i
C C n i

i

 +
∝ = = >

(6)

where i
u
 = v

ui
 + f

ui
, i

r
 = v

ri
 + f

ri
, i

i
 = v

ii
 + f

ii
.

For the rest of the cases, where n
li

> 1, there is no
inheritance possible in the case of Private inheritance.

6.3 Protected Inheritance

In Protected inheritance also, the case of n
lr
 = 1 is special.

In this case, the public and protected members inherited from
a base class by a class C under consideration, become private
in class C and cannot be inherited further. Here, the greater
the sum of the numbers of protected or public members in
a base class, greater will be the accessibility of C and hence,
greater the Activeness of C. For number of levels of
inheritance greater than 1, the number of publicly inheritable
members under protected inheritance will become zero, as
both protected and public members are inherited as protected
members by a second level derived class. From Table 1, the
following relation is obtained for Protected inheritance:

()
, 1lr u r

A AR lr
i

n i i
C C n

i

 × +
∝ = ≥

(7)

where, i
u
 = v

ui
+ f

ui
 and i

r
 = v

ri
+ f

ri
.

��� ������	
����	������	�����	������	�������	�����	������	�������	�����	�	��	��	������

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\23_SACHIN LAKRA_DEEPAK_JUGNESH_RAKESH_TV PRASAD

7. EFFECT OF FRIEND FUNCTIONS ON THE

ACTIVENESS OF A CLASS

The Activeness C
A
, of a Class, depends on the number of

friend functions, n
f
, accessing the members of the class.

Visibility does not have any effect on the friend functions
accessing a class. Thus,

C
A
 ∝ n

j
(8)

8. CLASS ACTIVENESS METRIC (CAM)

CAM is defined as the level of readiness of a class to be
accessed by its own member functions or by member
functions of another class. The Activeness of a class, C

A
,

can be measured by the Class Activeness Metric by the
following:

()
, 0, 0u r

f i i
i

s s
CAM n n s

s

+
= + = > (9a)

(1) () ()
() ,lr u r u r

lu u f
i i

n i i s s
CAM n i n

i s

 + × + +
= × + + +

(9b)

where n
i
 > 0, i

i
 > 0, s

i
 > 0.

or

CAM = C
AN

 + n
f
, n

i
 = 0, s

i
 > 0 (10a)

()
, 0, 0, 0u r

AU AR AI f i i i
i

s s
CAM C C C n n i s

s

+
= + + + + > > >

(10b)

8.1. Advantages and Limitations of the CAM

The advantages of the CAM include

• The CAM provides a means of gauging the
accessibility of a class.

• The CAM acts as an indicator of the quality of
design of a class.

• A cumulative CAM of all the classes and
inheritance hierarchies of a single module of a
software system could be used as a measure of the
quality of design of the module.

• A cumulative CAM of all the classes in all the
modules of the software system taken together can
be developed as a metric for the quality of design
of the complete software system.

A limitation of the CAM is that the CAM should be
considered only as an indication of the quality of design of
a Class. However, this implies that there will be a tradeoff
between accessibility and security as implied by data hiding
in the process of an attempt to improve the design of a class
by improving the value of the CAM.

8.2 Need of the CAM

The design of an object oriented software system is a major
issue in the correct and successful functioning of that system
upon implementation. Presently, not many measures exist
for measuring the quality of design of an object oriented
software system. The CAM completes this unfulfilled
requirement.

9. APPLYING THE CLASS ACTIVENESS METRIC

The Class Activeness Metric can be applied on various sets
of data of the variables involved in the calculation of the
CAM,

as shown in Table 2 and Table 3. The changes in each

data set from the previous data set, are highlighted in Bold.

Set 1 in Table 2, shows that a class with only 1 private
member is inaccessible to outside classes and has a CAM
value of 0. Introducing a public member and a protected
member in the class, as in Set 2 and Set 3, respectively,
increases

the

value

of

the

CAM,

indicating

higher accessibility

Table 2
Values of the Class Activeness Metric Obtained using

Equation 9a for ni = 0, si > 0

Data Set s
u

s
r

s
i

n
f

CAM

Set 1 0 0 1 0 0

Set 2 1 0 1 0 1

Set 3 1 1 1 0 2

Set 4 1 1 1 1 3

Set 5 1 1 2 1 2

Set 6 2 2 2 2 4

and higher activeness of the class. Similarly, introducing a
friend function into the class, as in Set 4, increases the CAM
further. However, increasing the number of private members
in the class, as in Set 5, decreases the value of the CAM.

Table 3
Values of the Class Activeness Metric Obtained using

Equation 9b for ni > 0, ii > 0 and si > 0

Data n
lu

n
lr

i
u

i
r

i
i

n
f

s
u

s
r

s
i

CAM
Set

Set 1 0 1 0 0 1 0 0 0 1 0

Set 2 0 1 0 0 1 0 1 0 1 1

Set 3 0 1 0 0 1 0 1 1 1 2

Set 4 1 0 1 0 0 0 1 1 1 Not defined

Set 5 1 1 1 1 1 0 1 1 1 7

Set 6 1 1 1 1 1 1 1 1 1 8

Set 7 1 1 1 1 2 1 1 1 1 6

Set 8 1 1 1 1 2 1 1 1 2 5

Set 9 2 1 1 1 2 1 1 1 2 6

Set 10 2 1 2 1 2 1 2 1 2 9.5

�	��������	������	���	���	����������	��	�	�
��� ���

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\23_SACHIN LAKRA_DEEPAK_JUGNESH_RAKESH_TV PRASAD

Set 1 in Table 3 shows that a class with only a single private
member, inherited from a base class by protected
inheritance has a value of CAM equal to 0, which agrees
with the fact that a class having only private members can
not be accessed from outside the class. However,
introducing a public member function and a protected
member function in the class, in Set 2 and Set 3,
respectively, increases the accessibility of the class, leading
to the values of 1 and 2 for the CAM in the respective data
sets. Similarly, introducing a level of public as well as
protected inheritance, as in Set 5, leads to a marked rise in
the value of the CAM, indicating high accessibility and
hence, high activeness of the class. Also, introducing a
friend function into the class, as in Set 6, further increases
the CAM. However, increasing private members, as in Set
7 and Set 8, decreases the CAM.

10. CONCLUSION

The CAM is thus an indicator of the quality of design of a
class in any object oriented system. The CAM also indicates,
in particular, that to increase the accessibility of private
member functions in a class, more friend functions should
be declared in the class, although this conflicts with the

concept of data hiding and security. Higher values of the
CAM indicate better accessibility of the class and faster
execution of the object oriented system. Thus, the CAM can
be used to guage the quality of design of a class or set of
classes in an object oriented system, thereby indicating the
need for improvements.

References

[1] E. Balagurusamy, Object Oriented Programming with C++,
Tata McGraw Hill Publishing Company Limited, (2006).

[2] Sachin Lakra, Bharti Jha, Nitin Bhardwaj, Ritu Saluja and
Nand Kumar: “Metrics for the Pre-Development Phase of
Software Requirements Engineering”, Proceedings
(Abstract) of National Conference on Emerging Trends in
Software Engineering and Information Technology, Gwalior,
Madhya Pradesh, India, (29th–30th March, 2007), 21.

[3] Sachin Lakra, Nand Kumar, Sugandha Hooda, Nitin
Bhardwaj: “A Metric for the Activeness of an Object-
Oriented Component Library”, Proceedings of Software
Engineering Research & Practice (SERP’07),
WORLDCOMP ’07 - The 2007 World Congress in
Computer Science, Computer Engineering, and Applied
Computing, Las Vegas, Nevada, USA, (25th–28th June
2007), 704–709.

